

Bogdan Iancu, Diana-Elena Gratie, Sepinoud Azimi and Ion Petre

On the implementation of quantitative model refinement

Summary

- Model building
- Quantitative model refinement
- The heat shock response (HSR)
- The role of protein acetylation within HSR
- Data refinement of the HSR model
- Implementations in RuleBender, Snoopy and Prism
- Conclusions

Model building

- The level of abstraction of the model
 - An abstraction of the real biological process is a biochemical reaction system
 - The biochemical network consists of a finite set of reactions the process to be analysed translates into
- The mathematical model
 - The framework
 - The dynamics of the system
 - The numerical setup

Why model refinement?

- Re-fitting the model causes several difficulties:
 - time consuming
 - computationally-intensive
 - non-unique solution

TUCS

Model formulation

Consider model M consisting of a list of m species

$$\Sigma = \{A_1, A_2, \dots, A_m\}$$
, and n reactions r_i , $1 \le i \le n$:
$$r_i \colon S_{i,1}A_1 + S_{i,2}A_2 + \dots + S_{i,m}A_m \overset{k_i}{\to} S'_{i,1}A_1 + S'_{i,2}A_2 + \dots + S'_{i,m}A_m$$
 where:

- $S_{i,1}, S_{i,2}, ..., S_{i,m}$; $S'_{i,1}, S'_{i,2}, ..., S'_{i,m}$ are the stoichiometric coefficients
- $k_i \ge 0$ are the kinetic rate constants
- The framework an ODE-based, mass-action formulation:
 - A time-dependent function is associated to each variable corresponding to each species, representing its concentration level at a specific moment in time: $[A_i]: \mathbb{R}_+ \to \mathbb{R}_+$

Model refinement

In systems biology:

- The starting point is an abstract, high-level model of a biological system
- The aim is to gradually add details concerning model's reactants and/or reactions so that certain numerical properties are preserved

We distinguish two types of refinement:

- data refinement: replacing one (or more) species with several subspecies
- process refinement: replacing a generic reaction describing a particular process with several reactions, elaborating on intermediate steps of the process

Quantitative model refinement (1)

A reaction in the refined model M' has the following form:

$$r_{i,j}$$
: $(T_{i,1}{}^{j}B_1 + \dots + T_{i,l}{}^{j}B_l) + S_{i,2}A'_2 + \dots + S_{i,m}A'_m \xrightarrow{k_{i,j}}$
 $(T'_{i,1}{}^{j}B_1 + \dots + T'_{i,l}{}^{j}B_l) + S'_{i,2}A'_2 + \dots + S'_{i,m}A'_m$

where: $k_{i,j}$ is the kinetic rate constant and $(T_{i,1}^{\ j}, ..., T_{i,l}^{\ j}, T_{i,1}^{\ j}, ..., T_{i,l}^{\ j})$ are nonnegative integers such that :

$$T_{i,1}^{j} + ... + T_{i,l}^{j} = S_{i,1} \text{ and } T'_{i,1}^{j} + ... + T'_{i,l}^{j} = S'_{i,1}$$

Quantitative model refinement (2)

• Model M' is a quantitative refinement of model M on variable A_1 if it satisfies the following conditions $\forall 2 \le i \le m, t \ge 0$:

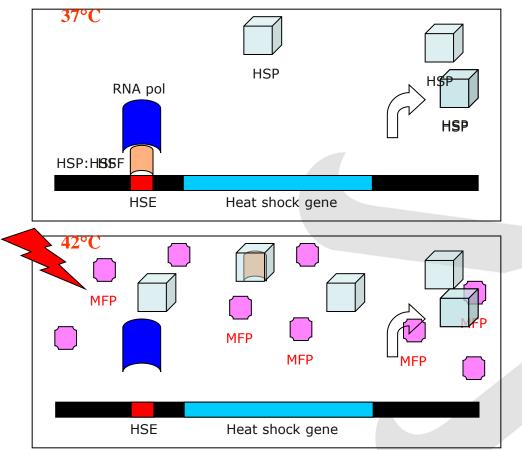
•
$$[A_i](t) = [A'_i](t)$$

•
$$[A_1](t)=[B_1](t)+...+[B_l](t)$$

Our focus

- The focus the implementation of quantitative model refinement in different frameworks:
 - Petri nets (with Snoopy);
 - Rule based modelling (with Bionetgen);
 - Guarded command languages (with PRISM).
- Some modelling frameworks are more suitable for the implementation of quantitative model refinement with respect to the compact representation of the refined model.

The heat shock response


- Cell's response to elevated temperatures
 - The cell reacts rapidly to elevated temperatures
- Major actors in HSR:
 - Heat shock proteins(HSP): assist misfolded proteins in their refolding process
 - Heat shock elements(HSE): act as promoter sites of the gene
 - Heat shock factors(HSF): mediate gene transcription, they trimerize and bind to HSEs, activating HSP synthesis

We consider here the heat shock response model proposed in I. Petre et al., 2009.

The molecular model for HSR

Courtesy of Ion PETRE

Petre et al., A simple mass-action model for the eukaryotic heat shock response and its mathematical validation, Natural Computing, 10(1), 595-612, 2011.

The molecular model

Transcription

- 1. HSF+HSF<->HSF₂
- 2. $HSF+HSF_2 < -> HSF_3$
- 3. $HSF_3+HSE<->HSF_3:HSE$
- 4. HSF₃:HSE->HSF₃:HSE+HSP

Backregulation

- 5. HSP+HSF<->HSP:HSF
- 6. HSP+HSF₂->HSP:HSF+HSF
- 7. HSP+HSF₃->HSP:HSF+2HSF
- 8. HSP+HSF₃:HSE->HSP:HSF+2HSF+HSE

Petre et al., A simple mass-action model for the eukaryotic heat shock response and its mathematical validation, Natural Computing, 10(1), 595-612, 2011.

Response to stress

9. PROT->MFP

10. HSP+MFP<->HSP:MFP

11. HSP:MFP->HSP+PROT

Protein degradation

12.HSP→0

By courtesy of Ion PETRE

Protein aceytlation

 Substituting an acetyl group for a hydrogen atom in a chemical compound

Types:

- N-terminal acetylation occurs at the α -amino group and is irreversible.
- Lysine acetylation occurs at the ε-amino group on the lysine residues. It influences gene regulation by changing the charge of histone tails.
- The role of protein acetylation:
 - Acetylation diminishes hsf's DNA binding activity (Westerheide et al., 2009)

Data refinement of the HSR model

- All species and complexes involving hsf are refined to include two subtypes of hsf:
 - First, where its K80 residue is acetylated
 - Second, where it is not acetylated
- Data refinement of the HSR model:

```
hsf → {rhsf, rhsf<sup>(1)</sup>}

hsf<sub>2</sub> → {rhsf<sub>2</sub>, rhsf<sub>2</sub><sup>(1)</sup>, rhsf<sub>2</sub><sup>(2)</sup>}

hsf<sub>3</sub> → {rhsf<sub>3</sub>, rhsf<sub>3</sub><sup>(1)</sup>, rhsf<sub>3</sub><sup>(2)</sup>, rhsf<sub>3</sub><sup>(3)</sup>}

hsf<sub>3</sub>: hse → {rhsf<sub>3</sub>: rhse, rhsf<sub>3</sub><sup>(1)</sup>: rhse, rhsf<sub>3</sub><sup>(2)</sup>: rhse, rhsf<sub>3</sub><sup>(3)</sup>: rhse}

hsp: hsf → {rhsp: rhsf, rhsp: rhsf<sup>(1)</sup>}
```


Data refinement - example

Dimerization

Initial reaction:

 $2hsf \leftrightarrow hsf_2$

Refined reactions:

rhsf + rhsf \leftrightarrow rhsf₂ rhsf + rhsf⁽¹⁾ \leftrightarrow rhsf₂⁽¹⁾ rhsf⁽¹⁾ + rhsf⁽¹⁾ \leftrightarrow rhsf₂⁽²⁾

Numerical setup of the refined model

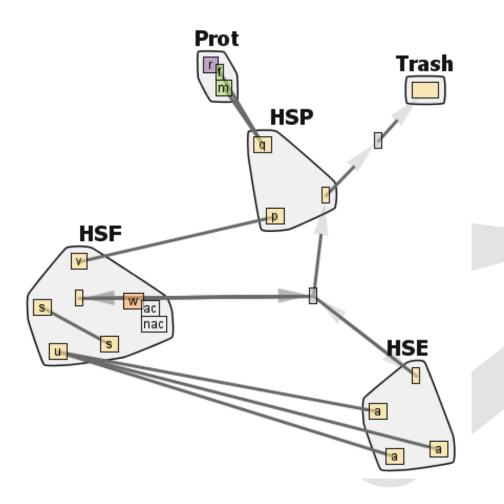
- The initial values of the refined variables are set so as to fulfill the data refinement relations
 - Example:

$$[hsf_3](0) = [rhsf_3](0) + [rhsf_3^{(1)}](0) + [rhsf_3^{(2)}](0) + [rhsf_3^{(3)}](0)$$
$$[hse](0) = [rhse](0)$$

- The setup:
 - The systems of ODEs of the initial and the refined model are identical modulo a variable renaming.
 - Both the refined and the initial model have identical initial conditions.
 - The refined model is a quantitative refinement of the original one.

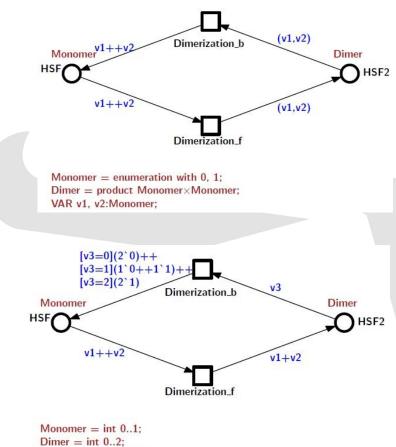
Refining HSR

- The number of reactions and reactants augmented considerably:
 - The initial model consists of: 12 reactions involving 10 different species and 16 kinetic rate constants.
 - The refined model comprises: 39 reactions, 20 species and 54 kinetic rate constants.
- Fitting a model like the refined one for the HSR is time consuming and requires a lot of computational resources.
 - The proposed approach allowed building a model with a satisfactory behavior, avoiding any supplementary model fit.


Refining HSR – frameworks

- Four different frameworks for the implementation of the heat shock response:
 - ODE-based implementation
 - Rule-based modelling
 - Petri nets
 - Model checking
- Tools and software:
 - ODEs: Copasi.
 - Rule-based modelling: Bionetgen and Rulebender.
 - Petri nets: Snoopy.
 - Model checking: Prism.

HSR- a rule-based implementation – Contact map


Model refinement with colored Petri Dimerization nets

Initial model

Monomer 2' M Dimerization_b 1' D Dimer HSF2 2' M 1' D Dimerization_f

Monomer = enumeration with M; Dimer = enumeration with D:

Refined model

Monomer = int 0..1; Dimer = int 0..2; VAR v1, v2:Monomer; VAR v3:Dimer;

/AR v3:Dime

The Prism implementation

- The representation of all possible configurations for acetylated species:
 - The implementation required defining separate variables for the representation of all possible acetylation-refined configurations of hsf.
- Verification of two basic properties of the model:
 - The validity of the mass-conservation relations.
 - The level of DNA binding return to basal values, both at 37°C and at 42°C.

Discussion

- Our aim: studying the capabilities of four different frameworks with regards to the implementation of quantitative model refinement: ODEs, rule-based modelling, Petri nets and guarded command languages.
- Rule-based modelling:
 - The compact representation is based on partial presentation of the details of the refined model.
- Petri nets:
 - The complexity of the refinement can be tackled by the use of colored Petri nets.
- Guarded command languages:
 - The implementation of the refinement required an explicit description.

Advantages and future work

- Advantage:
 - Model refinement is more efficient computationally in setting up a large model.
- The acetylation refined heat shock response model:
 - The initial model consists of: 12 reactions involving 10 different species.
 - The refined model comprises: 39 reactions, 20 species.
- The refinement of the ErbB signalling pathway:
 - The initial model consists of: 148 reactions involving 103 different.
 - The refined model comprises: 936 reactions, 416 species.
- Future work:
 - Building up a software for the automatic construction of refined models;
 - Add the concept of process refinement to the current framework.

Acknowledgments

Joint work with:

- Diana-Elena Gratie
- Sepinoud Azimi
- Ion Petre
 - Department of IT and Turku Centre for Computer Scince, Åbo Akademi University, Finland

Acknowledge fruitful discussion with:

- Monika Heiner (on the Petri net implementation)
- James Faeder (on the Bionetgen implementation)
- Leonard Harris (on the Bionetgen implementation)
- Adam Smith (on technical support regarding RuleBender)

Work has been funded by Academy of Finland under the Quantitative Model Refinement Project 2013-2017.

THANK YOU!

